
Nail in the Java Key Store coffin

Tobias Ospelt, modzero AG

Content

• Purpose/mechanics of Key Store files
• Key Store types
• Purpose/mechanics of JKS
• Weaknesses and Cracking
• Recommendations

Purpose of Key Store files - User view

PrivatePublic

Key Store File

File System (HD)

00010101010101101101001
01001001000100100101010
10101010011101110110010
11111011110101010101010
10100100000100101001010

Password Encryption

Not How Asymmetric Crypto Works

Key Store Types

• Various options in Java
• Java Key Store (JKS)
• JCEKS
• BouncyCastle Key Store (BKS)
• PKCS#12

Usage of JKS

• Default format in all Java and Android versions
• Oracle databases (TLS keys), Apache Tomcat

(TLS keys), Android Studio (app signature
keys)…

• Java + public key cryptography

Usage of JKS - Android Studio

How does JKS Work?

PrivatePublic

Key Store File

File System (HD)

00010101010101101101001
01001001000100100101010
10101010011101110110010
11111011110101010101010
10100100000100101001010

Key Store Password Encryption
Key Password

How does JKS Work?

PrivatePublic

Key Store File

File System (HD)

00010101010101101101001
01001001000100100101010
10101010011101110110010
11111011110101010101010
10100100000100101001010

Key Store Password Encryption
Key Password

Integrity check only!
checksum

Usage of JKS - Android Studio

Key Store Password only for Integrity

How does JKS Work?

PrivatePublic

Key Store File

File System (HD)

00010101010101101101001
01001001000100100101010
10101010011101110110010
11111011110101010101010
10100100000100101001010

EncryptionKey Password

How does JKS Work?

PrivatePublic

Key Store File

File System (HD)

00010101010
10110110100
10100101010
10101010011
10111010011

EncryptionPrivate Key Password

Public Key Not Encrypted

How does JKS Encryption Work?

PrivatePublic

Key Store File

File System (HD)

00010101010
10110110100
10100101010
10101010011
10111010011

EncryptionPrivate Key Password

Encryption of the Private Key

• Private Key XOR Key Stream = Encrypted Private Key
• Encrypted Private Key XOR Key Stream = Decrypted

Private Key
• How is the Key Stream generated for JKS?

Key Stream Generation

• Invented a Password Based Encryption (PBE) using SHA-1
• Generating the key stream:

• A = SHA1(password + IV)
• B = SHA1(password + A)
• C = SHA1(password + B)
• …
• Key Stream = Concatenate A, B, C…

PrivatePublic

Key Store File
00010101010
10110110100
10100101010
10101010011
10111010011

IV

Decryption of the Private Key

Not so Obvious Weakness

Not so Obvious Weakness

• "Only one SHA-1 application is required to
derive the first keystream byte. Since DER
encoded keys contain a lot of structure in their
first bytes, […] makes a dictionary-based
cracker highly efficient." - cryptosense.com

• Cool… but where is the PoC?
• Is that even feasible in practice?

Not so Obvious Weakness - PoC

• For password cracking, we only need to do:
1.SHA1(password candidate+IV)
2.XOR first 20 bytes of encrypted key =  

 first 20 bytes of decrypted key
3.Check first 20 bytes looks like a private key

The first 20 Bytes of a Decrypted Private Key

• PKCS#8, DER encoding, ASN.1
• In theory:

• OID 9 bytes long "somewhere at the start"
• 0x2a864886f70d010101 (rsaEncryption)
• Best solution: "Search" for OID

The first 20 Bytes of a Decrypted Private Key

• In practice:
• "Search" for OID is inefficient
• Let’s look at thousands of private keys and brute force…

• Lucky: Fixed values 16 out of 20 bytes
RSA all: 0x30????????00300d06092a864886f70d010101
DSA 512: 0x30????????3081a806072a8648ce3804013081
DSA rest:0x30????????003082012c06072a8648ce380401
EC (256):0x30????????1306072a8648ce3d020106082a86
…

Not so Obvious Weakness - Optimisation

• Example for an RSA key
1.SHA1(password candidate+IV)
2.XOR first 20 bytes of encrypted key =  

 first 20 bytes of decrypted key
3.Check if first 20 bytes are

0x30????????00300d06092a864886f70d010101

Not so Obvious Weakness - Result

• Example for an RSA key
1.SHA1(password candidate+IV)
2.Check if first 20 bytes correspond to the

precalculated 16 bytes
• Implemented in the hashcat password cracker

tool to run on GPUs (thanks atom!)
• It uses a weakness in SHA-1 to be even

faster

One SHA-1 calculation for password cracking

Attacking a JKS File

$ java jar JksPrivkPrepare.jar file.jks > hash.txt
$./hashcat -m 15500 -a 3 -w 3 hash.txt ?u?u?u?u?u?u?u?u?u
hashcat (v3.6.0) starting...
[…]
* Device #1: GeForce GTX 1080, 2026/8107 MB allocatable, 20MCU
[…]
Hash.Type........: JKS Java Key Store Private Keys (SHA1)
[…]
Speed.Dev.#1.....: 7946.6 MH/s (39.48ms)
[…]

Attacking a JKS File

• All alphanumeric passwords of length 8
• 8 hours on a single NVidia 1080 GPU

Recommendations

• Never do your own Crypto
• Refactor your Java Software
• Don’t use JKS

• Good passwords (length 12+), keep file secret
• PKCS#12 default for upcoming Java 1.9

• Prediction: JKS will stay for a long time
• "Existing keystores will not change"
• "Keystores tend to be long-lived"

• More details in POC||GTFO 0x15 journal

Thank you for your Attention

Questions?

Tobias Ospelt,
tobias@modzero.ch
Twitter: @floyd_ch

Teaser Question 1

• How do you know which fingerprint to expect (RSA, DSA
512, DSA rest, EC, etc.)?

The First 20 Bytes of a Decrypted Private Key

• But how do you know which fingerprint to expect?
• Public Key is not encrypted, just check

RSA all: 0x30????????00300d06092a864886f70d010101
DSA 512: 0x30????????3081a806072a8648ce3804013081
DSA rest:0x30????????003082012c06072a8648ce380401
EC (256):0x30????????1306072a8648ce3d020106082a86
…

Teaser Question 2

• You don’t know all twenty bytes of a fingerprint (the
question marks), how do you know you didn’t guessed the
wrong password?

So many question marks!

• Yes, not 100% probability that the password also matches
• An earlier implementation relied on fewer fixed bytes and had

to check if the entire key decrypts properly after finding a
candidate…

• But 1/2120 probability for a failure, which means we never hit
it for password brute-forcing

RSA all: 0x30????????00300d06092a864886f70d010101

Teaser Question 3

• If no Private Key Password is specified, the Key Store
Password is used. Could we attack the Key Store Password
then? If no, why not? If yes, why don’t we?

Crack the Key Store Password?

• Default:
• If no Private Key Password is specified it is

set to the same value as the Key Store
Password

• If the default case applies (same passwords),
we can crack any of them

• Actually nearly all other password crackers do it
• They crack the wrong password sometimes…

Key Store Password - Integrity Check

Key Store Password - Integrity Check

Why not crack the Key Store Password?

• Which cracking approach has better performance?
• More data go into the SHA-1 calculation, whereas otherwise

it is only password+IV
• Benchmarking showed that cracking the private key

directly is more efficient
• Plus it also works in the non-default case (different

passwords)

