AFL - American Fuzzy Lop

A short introduction
by Tobias Ospelt, March, Sth 2015

Silicon Valley Fuzzers, Fuzzing meetup,
Santa Clara, CA

Ve

* Penetration Tester (usually CH, DE, UK, once
in the USA)

* Android stuff, mona.py unicode alignment,
tincd metasploit module, started fuzzing

— floyd.ch / @floyd_ch
e AFL user (not an expert on all the internals)

Company [fiBNZEro

* 6 IT security experts

e Keykeriki, Backtrack, Degate, remote-
exploit.org, Die Datenkrake, Analysis of the
German state trojan

 We do all areas of technical HW & SW security
analysis (Penetration Testing, Crypto, Web,
medical devices, etc.)

AFL - American Fuzzy Lop

* Fuzzer developed by Michal Zalewski
(lcamtuf), Project Zero, Google

— He's on holiday today ®
* http://lcamtuf.coredump.cx/afl/

e "Under certain conditions you are crazy if you
don't use AFL for your project” - me

Why use AFL?

It finds bugs

2 JavaScrlptCore 1234 pdfium ! ffmpeg 1234 |ihmatroska ! libarchive 12

3456. - wireshark ! 1 ImageMaglck 12345578]cms) PHP 12 ame!

12 fwknop metacam ! exn‘probe : capnproto :

It's spooky

* Michal gave djpeg (1JG jpeg library) to AFL
* Plus a non-jpeg file as an input
— S echo 'hello' >in_dir/hello

* AFL started to produce valid jpeg files after a

day or two
EEEEEEEEEEEE =

-) O

EEEEEEEEEEEEEEEEE R

o OO - O M
o =

mrEEEBE=E =N R L

NMore reasons

It's dead simple

No configuration of AFL necessary, robust
It's cutting edge

It's fast

Produces very very good input files (corpus)
that can be used in other fuzzers

Many targets that were never touched by AFL
(and it will crush them)

\When | read through lcatumft’s
post on less’ and ‘strings’

Source: http://securityreactions.tumblr.com/page/10

And because you will go

y

-
»” L
.

o

pY
£ 4

You won't believe what you are
reading

Source: http://lcamtuf.coredump.cx/afl/
demo/

afl-generated, minimized image test sets
(partial) [...]

JPEG XR jxrlib 1.1 JxrDecApp' IE = Ditched 2

> Due to the sheer number of exploitable bugs
that allow the fuzzer to jump to arbitrary
addresses.

VWhen to use AFL

The usual use case

You have the source code and you compile
with gcc or clang

Your are on 32bit or 64bit on Linux/OSX/BSD

The to-be-fuzzed code (e.g. parser) reads it's
input from stdin or from a file

The input file is usually only max. 10kb
This covers *a lot* of Linux libraries

\What it something does not apply?

* No source code?
— Try the experimental QEMU instrumentation

* Not on 32/64 bit?

— There is an experimental ARM version

* Not reading from stdin or file?

— Maybe your project has a utility command line tool
that does read from file

— Or you write a wrapper to do it

— Same if you want to test (parts of) network protocol
parsers

How to use AFL

Steps of fuzzing

1. Compile/install AFL (once)
2. Compile target project with AFL

— afl-gcc / afl-g++ / afl-clang / afl-clang++ / (afl-as)
3. Chose target binary to fuzz in project

— Chose its command line options to make it run
fast

4. Chose valid input files that cover a wide
variety of possible input files

— afl-cmin / (afl-showmap)

Steps of fuzzing

5. Fuzzing

— afl-fuzz
6. Check how your fuzzer is doing
— command line Ul / afl-whatsup / afl-plot / afl-gotcpu

7. Analyze crashes
— afl-tmin / triage_crashes.sh / peruvian were rabbit
— ASAN / valgrind / exploitable gdb plugin / ...

8. Have a lot more work than before
— CVE assignment / responsible disclosure / ...

Installing AFL (step 1)

#!/bin/bash

#Download & compile new AFL version:

wget http://lcamtuf.coredump.cx/afl.tgz

tar xfz afl.tgz

rm afl.tgz

cd find . -type d —-iname "afl-*"|sort|head -1
make

echo "Provide sudo password for sudo make install"
sudo make install

AFL binaries

/opt/afl-1.56bS ./afl-

afl-as afl-fuzz afl-plot
afl-clang afl-gt++ afl-showmap
afl-clang++ afl-gcc afl-tmin
afl-cmin afl-gotcpu afl-whatsup

/opt/afl-1.56b$./afl-gcc

[...]

This 1s a helper application for afl-fuzz. It serves
as a drop-in replacementfor gcc or clang, letting you
recomplile third-party code with the required runtime
instrumentation.

[...]

Instrumenting a project [step 2] -
example: libtiff from CVS repository

/opt/libtiff-cvs-afl$ export CC=afl-gcc
/opt/libtiff-cvs-afl$ export CXX=afl-g++
/opt/libtiff-cvs-afl$./configure --disable-shared
/opt/libtiff-cvs-afl$ make clean
/opt/libtiff-cvs-afl$ make

Choosing the binary to fuzz (step 3) -
they are all walting for It

/opt/libtiff-cvs-afl$./tools/

bmp2tiff fax2tiff ppm2tiff raw2tiff
thumbnail tiff2pdf tiff2rgba tiffcp
tiffdither tiffinfo tiffset fax2ps
gif2tiff pral2rgb ras2tiff rgb2ycbcr
tiff2bw ti1ff2ps tiffcmp tiffcrop
tiffdump tiffmedian tiffsplit

/opt/libtiff-cvs-afl$./tools/bmp2tiff

LIBTIFF, Version 4.0.3

Copyright (c) 1988-1996 Sam Leffler

[...]

usage: bmp2tiff [options] input.bmp [inputZ2.bmp ...]
output.tif

Chose Initial input files (step 4]

/opt/libtiff-cvs-afl$ mkdir input all
/opt/libtiff-cvs-afl$ scp host:/bmps/ input all/
/opt/libtiff-cvs-afls 1ls -1 input all |wc -1

886

Chose Initial input files (step 4]

/opt/libtiff-cvs-afl$ afl-cmin -i input all -o input
-- /opt/libtiff-cvs-afl/tools/bmp2tiff @R /dev/null
corpus minimization tool for afl-fuzz by
<lcamtuf@google.com>

[*] Testing the target binary...

[+] OK, 191 tuples recorded.

[*] Obtaining traces for input files 1in

'Input all'...

Processing file 886/886...

[*] Sorting trace sets (this may take a while) ...

[+] Found 4612 unique tuples across 886 files.

[*] Finding best candidates for each tuple...
Processing file 886/886...

[*] Sorting candidate list (be patient)...

[*] Processing candidates and writing output files...
Processing tuple 4612/4612...

[+] Narrowed down to 162 files, saved in 'input'.

Chose Initial input files (step 4]

/opt/libtiff-cvs-afl$ 1ls -1 input |wc -1
162

Fuzzing (step 9]

/opt/libtiff-cvs-afl$ screen -S fuzzing
/opt/libtiff-cvs-afls$ afl-fuzz -i input —-o output
-— /Jopt/libtiff-cvs-afl/tools/bmp2tiff @@ /dev/null

How Is our fuzzer doing? (step 6]

american fuzzy lop 1.56b (bmp2tiff)

- N

o0

O 00

(s e I Ve BN >

How Is our fuzzer doing? (step 6]

american fuzzy lop 1.56b (bmp2tiff)

e 0O

¢ LN N
)

Vi Y 1Y n

m T T M

[) I =N
o0

) |

I
) L) CD)

How Is our fuzzer doing? (step 6]

american fuzzy lop 1.56b (bmp2tiff)

~J

- OO

i

B

’ A
-

)

-

GO

[2 B T > T
W)

wn

How Is our fuzzer doing? (step B)

/opt/libtiff-cvs-afls$ afl-gotcpu

afl-gotcpu 1.56b (Mar 9 2015 02:50:32) by
<lcamtuf@google.com>

[*] Measuring preemption rate (this will take 5.00
sec) ...

[+] Busy loop hit 79 times, real = 5001 ms, slice =
2448 ms.

>>> FAIL: Your CPU 1s overbooked (204%). <<<

How Is our fuzzer doing? (step 6]

 afl-plot

Banner: bmp2tiff
Directory: output/
Generated on: Mon MA=r 9 04:31:02 CET 2015
250
200 /_/)
150 =
100 +
50 |
0 9
Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09
03:16 03:18 03:20 03:22 03:24 03:26 03:28 03:30

total paths
current path
pending paths
pending favs
cycles done

How Is our fuzzer doing? (step 6]

 afl-plot

- uniq crashes
unig hangs
levels

NN WW SO
OUIOUIOUIOUIOUIO

Vo

f ———

Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09
03:16 03:18 03:20 03:22 03:24 03:26 03:28 03:30

3000
2500
2000
1500
1000
500
0 ‘ ‘ : :
Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09 Mar 09
03:16 03:18 03:20 03:22 03:24 03:26 03:28 03:30

execs/sec

— process timing
| run time
| last new path
| last uniq crash
| 1last uniq hang
= cycle progress
| now processing
| paths timed out
- stage progress
| now trying :

| stage execs :

| total execs :

| exec speed : 32.71/sec (slow!)
= fuzzing strategy ylelds

bit flips :
byte flips :
arithmetics :
known ints :
havoc :

american fuzzy lop

ther examples
o.29c (NG

o —— — — e — —

favored paths

total crashes

o — — — —

overall resulls —

cycles done
total paths
uniq crashes :
uniq hangs

N

map coverage
map density :

count coverage :

findings 1in depth

new edges on

total hangs

v

o ———— — —

levels

pend1ng :
pend fav
own finds
imported

ariable

124 (88 un1que)

e e e i s e e e e —

path geometry ————————4

- —— — — — —

|
|
|
|
|
| trim :
L
[l

[cpu:301%]

Crash analysis (step /]
minimizing crash input

/opt/libtiff-cvs-afl$ afl-tmin -i output/crashes/id\:
000000\, sig\:11\,src\:000003\,op\:intlo\,pos\:21\,val
\:+1 -0 minimized-crash /opt/libtiff-cvs-afl/tools/
bmp2tiff @@ /dev/null

afl-tmin 1.56b (Mar 9 2015 02:50:31) by
<lcamtuf@google.com>

[+] Read 36 bytes from 'output/crashes/id:000000,sig:
11,src:000003,0p:1ntl6,pos:21,val:+1".

[*] Performing dry run (mem limit = 25 MB, timeout =
1000 ms) ...

[+] Program exits with a signal, minimizing 1in crash
mode.

[*] --- Pass #1 —--—-
[*] Stage #1: Removing blocks of data...
Block length = 2, remaining size = 36

Block length = 1, remaining size = 34

[...]

Crash analysis (step /]
minimizing malicious Input

/opt/libtiff-cvs-afl$ 1ls -als output/crashes/id\:
000000\, sig\:11\,src\:000003\,op\:intl6\,pos\:21\,val
\:+14 -rw———---—- 1 user user 36 Mar 9 04:17 output/
crashes/id:000000,sig:11,sxrc:000003,0p:intl6,pos:
21,val:+1

/opt/libtiff-cvs-afl$ 1ls -als minimized-crash 4 -
rw——————— 1 user user 34 Mar 9 05:51 minimized-crash

Crash analysis (step /]
example of manual analysis

uncompr size = width * length;

uncomprbuf = (unsigned char *) TIFFmalloc (uncompr size);
(gdb) p width

S70 = 65536

(gdb) p length

$S71 = 65544

(gdb) p uncompr size

S72 = 524288

524289 1s (65536 * ©65544) $ MAX INT

Crash analysis (step /]
peruvian were-rabbit

ras
pe

e Using crashes

N analysis (step /]

~uvian were-rabbit

as inputs, mutate them to find

different crashes (that AFL considers "unique”)

Jopt/libtiff-cvs-afl$ afl-fuzz -1 output/crashes/ -o
peruvian crashes -C /opt/libtiff-cvs-afl/tools/bmp2tiff

@@ /dev/null

Crash analysis (step /]
peruvian were-rabbit

yeruvian were-rabbit 1.56b (bmp2tiff)

You want more?

* Try it yourself
e Subscribe to afl-users
e Convince Michal to come here

Int 3
Twitter: @floyd ch
http://floyd.ch

tobias@modzero.ch
Twitter: @mod0O
http://www.modzero.ch

